
15.54. Model: The buoyant force on the cylinder is given by Archimedes' principle.

Visualize:

Solve: (a) Initially, as it floats, the cylinder is in static equilibrium, with the buoyant force balancing the cylinder's weight. The volume of displaced liquid is Ah, so

$$F_{\rm B} = \rho_{\rm liq}(Ah)g = w$$

Force F pushes the cylinder down distance x, so the submerged length is h + x and the volume of displaced liquid is A(h + x). The cylinder is again in equilibrium, but now the buoyant force balances both the weight and force F. Thus

$$F_{\rm B} = \rho_{\rm liq}(A(h+x))g = w + F$$

Since $\rho_{liq}(Ah)g = w$, we're left with

$$F = \rho_{liq} Agx$$

(b) The amount of work dW done by force F to push the cylinder from x to x + dx is $dW = Fdx = (\rho_{iiq}Agx)dx$. To push the cylinder from $x_i = 0$ m to $x_f = 10$ cm = 0.10 m requires work

$$W = \int_{x_i}^{x_f} F \, dx = \rho_{liq} Ag \int_{x_i}^{x_f} x \, dx = \frac{1}{2} \rho_{liq} Ag(x_i^2 - x_f^2)$$

= $\frac{1}{2} (1000 \text{ kg/m}^3) \pi (0.020 \text{ m})^2 (9.8 \text{ m/s}^2) (0.10 \text{ m})^2 = 0.616 \text{ J}$